Danube School

on Instrumentation in Elementary Particle & Nuclear Physics

in Elementary Particle & Nuclear Physics UNIVERSITY OF NOVI SAD, SERBIA September 8-13, 2014

UNIVERSITY OF NOVI SAD, SERBIA September 8-13, 2014

CHALLENGES FOR NOVEL EXPERIMENTS AT FUTURE ACCELERATORS

Ingrid-Maria Gregor, DESY

Thanks to:

Phil Allport , Ties Benke, Cinzia da Via , Ulrich Husemann, Fabian Hügging, Uli Koetz, Frank Simon, Norbert Wermes, Marc Winter...

- Tracking Detectors
 - Silicon Vertex Detectors
 - Silicon Tracking Detectors
 - Gaseous Detectors (Trackers and Muon Spectrometers)
- Calorimeters
 - ILC/CLIC R&D
 - HL-LHC R&D
- Read-out and Triggering
- Conclusions

Some bias in the selection of the most important detectors ...

Lectures Program

» Particles Interactions with matter - 2h - W.Riegler, CERN

WARNING

CHALLENGES

AHEAD

- » Silicon Detectors for HEP and Nuclear Physics 2h J.Ninkovic – Max Planck Society Semiconductor Laboratory, Munich, Germany
- » Electromagnetic and Hadronic Calorimetry 2h R. Paramatti, INFN Rome, Italy
- » Gaseous Detectors 2h M.Titov, IRFU, France
- » Particle Identification and photo-detectors 2h S. Kopar, J.S.Institute Ljubljana, Slovenia
- » Electronics & Signal Processing 2h M.Friedl, HEPHY, Vienna, Austria
- » Magnets systems 2h H.Ten Kate CERN
- » Application of Physics to Medicine 2h P. Cerello, INFN Torino, Italy

INTRODUCTION

FAIR: Facility for Antiprotons and Ions Research, under construction

HL-LHC: high luminosity upgrade of the LHC

5

PARTICLE PHYSICS DETECTOR OVERVIEW

Tracker: Precise measurement of track and momentum of charged particles due to magnetic field. **Calorimeter**: Energy measurement of photons, electrons and hadrons through total absorption **Muon-Detectors**: Identification and precise momentum measurement of muons outside of the magnet

THE CHALLENGES

- Precision (resolution)
- Granularity
- Power consumption
- Readout speed
- Material budget

TRACKING DETECTORS

PARTICLE PHYSICS DETECTOR OVERVIEW

Tracker: Precise measurement of track and momentum of charged particles due to magnetic field.

Tracker: for muons ...

Transverse slice through CMS

INNER TRACKING DETECTORS

Example: Search for $H \rightarrow Z^0 Z^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

- => reconstruction of high tracks with
- + high efficiency
 - single track $\epsilon > 95\%$
- + momentum resolution
 - $\Delta p_t / p_t = 0.01 \text{ pt [GeV]}$

LHC requirement

TRACKING DETECTORS

- Precise measurement of track and momentum of charged particles due to magnetic field.
- High energy
 - Small fraction of energy deposited in instrument
- The trajectory should be disturbed minimally by this process (reduced material)
- Charged particles ionize matter along their path.
 - Tracking is based upon detecting ionisation trails.
 - An "image" of the charged particles in the event

VERTEX DETECTOR CHALLENGES

- Main challenge: identify c quark and au^{\pm} lepton jets
- life time ~10-12 sec => ~100um
 => particles decay within the vacuum beam pipe
- reconstruct decay products

Trend in tracking detectors: pixellised detectors installed very close to the beam interaction region

- Minimal distance limitations:
 - beam pipe radius
 - beam associated backgrounds
 - density of particles produced at the IP

Perfect pixels:

- very small pitch (~20 μm)
- ery thin material (~50 μm)
- high readout speed
- super radiation hard
- smart trigger capabilities

Figure of merit for the VXD: Impact Parameter Resolution

 $\sigma_{r\phi} \approx \sigma_{rz} \approx a \oplus b/(psin^{3/2} \vartheta)$

Accelerator	a (µm)	b (µm)
LEP	25	70
Tevatron	10	40
LHC	<12	<70
RHIC-II	12	19
ILC/CLIC	<5	<10

OPTIMISING = COMPROMISING

- Conflict between physics performance driven parameters and running condition constraints:
 - Physics performance: spatial resolution (small pixel) and material budget (thin sensors) + distance to IR
 - Running conditions: read-out speed and radiation tolerance (HL-LHC: 10 times LHC)
 - Moreover :
 - Imitations from maximum power dissipation compatible
 - ➡ limitations from highest data flow acceptable by DAQ

- Ultimate performance on all specifications cannot be reached simultaneously
 - each facility & experiment requires dedicated optimisation (hierarchy between physics requirements and running constraints
 - there is no single technology best suited to all applications
 - explore various technological options
 - motivation for continuous R&D (optimum is strongly time dependent)

HYBRID PIXELS - "CLASSICAL" CHOICE HEP

- The read-out chip is mounted directly on top of the pixels (bump-bonding)
- Each pixel has its own read-out amplifier
- Can choose proper process for sensor and read-out separately
- Fast read-out and radiation-tolerant

... but:

- Pixel area defined by the size of the read-out chip
- High material budget and high power dissipation

- CMS Pixels (current and upgrade)
- ATLAS Pixels (current and upgrade)
- Alice: 50 μm x 425 μm
- LHCb VELO (upgrade)
- Phenix upgrade
- CBM @FAIR
- PANDA @FAIR

Ingrid-Maria Gregor, DESY - Challenges for Future Experiments 14

SENSORS FOR HYBRID PIXELS

*kkkkkkkkk*kk

sensor

FE chip

Planar Sensor

- current design is an n-in-n planar sensor
- silicon diode
- radiation hardness proven up to 2.4 * 10¹⁶ p/cm²
- problem: HV might need to exceed 1000V

3D Silicon

- Both electrode types are processed inside the detector bulk instead of on the wafer's surface.
- Max. drift and depletion distance set by electrode spacing
- Reduced collection time and depletion voltage

n+

Low charge sharing

p+

MIP

 \mathcal{O}

O

n+

CVD (Diamond)

- Poly crystalline and single crystal
- Low leakage current, low noise, low capacitance
- Radiation hard material
- Operation at room temperature possible
- Drawback: 50% signal compared to silicon for same X₀ but better S/N ratio (no dark current)

Very strong R&D efforts to develop sensors for future LHC applications!

CERN RD50

FE CHIP DEVELOPMENTS

- Modern chip technologies enable
 - high channel density
 - pre-amplification, data storage etc. very close to the detector
 - reduced noise
 - Iow power dissipation
 - industrial production
- integration density is growing rapidly
- Need fine lithography ASIC technology to allow pixel sizes of as small as ~50µm×50µm

CERN RD53

ATLAS HL-LHC Pixels:

- Cell size: 50x50 µm²
- Compatible with 50x50 and 25x100 µm₂ pixels
- 65 nm technology
- Up to 2 Gb/s output bw
- Full size prototype in 2 years
- Could read all the layers at up to 1.5 Mhz L0 rate

MONOLITHIC PIXEL SENSORS

- Some applications require extremely good spatial resolution (factor 2-5 better than at LHC) and very low material in the tracker (ILC, CLIC, ALICE...)
- Hybrid pixel sensors: factor 10 too thick for such applications
- Technologies which have sensor and readout electronics in one layers -> monolithic approach
- Four different technologies under study for ILC vertex detector
 - CCD, DEPFET, CMOS, and 3D
- Baseline technology for real experiments
 - DEPFET for Belle II @KEK (Japan)
 - Mimosa MAPS for Star @ RHIC (USA)
- Newest development: In HR/HV-CMOS charge collection through drift greatly improves speed and radiation hardness. Use at pp collision rates → HL-LHC Upgrades?

EXAMPLE: ALICE ITS PIXEL DETECTOR

- Improve impact parameter resolution by a factor of 3
- Improve standalone tracking capability and p_{τ} resolution by means of increased granularity
- LHC environment (radiation) with ILC like requirements ...

Flex-cable bus

Bump bonding

Pixel modules

Mechanical structure

Silicon chip

MORE TRACKER

- Tracking system extend in multiple layers up to the magnet bore/ calorimeter
 - Pixel detectors too expensive, too difficult to make, too much material to cover this area
 - Further tracking detectors needed

- HL-LHC inner tracker:
 - radiation hardness, rate, material budget
 - solution: silicon tracking detectors
- Other experiments:
 - gaseous detector, fibre tracker,

ATLAS AND CMS TRACKER FOR HL-LHC

- Similar granularity
 - Strip pitch ~ 70-90 μ m & length ~ 2.5 to 5 cm
 - Pixel pitch ~ 25-30 μ m and ~ 100 μ m length
- Challenges:
 - radiation damage (ok)
 - bandwidth, trigger
 - size, production, costs !!

		ATLAS	CMS
Pixels	Layers (B+EC)	4 + 6	4 + 10
	Area	8.2 m ²	4.6 m ²
Strips	Layers (B+EC)	5.1 + 7	6 + 5
	Area	193 m²	218 m ²

CMS

GASEOUS DETECTORS

- Granularity
- Robustness
- Very low material
- Relative low cost for large volumes
- Intrinsically radiation tolerant

Applications in

- Tracking detectors (low occupancy)
- Calorimetric detectors
- Muon systems
- Other experiments

Focus of new developments: Gas amplification systems based on Micro pattern gas detectors

Integration of gas amplification into Silicon technology:

INGRID and friends

CERN RD51

TIME PROJECTION CHAMBER

- Builds on successful experience of PEP-4, ALEPH, ALICE, DELPHI, STAR,
- Large number of space points, making reconstruction straight-forward
- $dE/dx \Rightarrow$ particle ID, bonus
- Minimal material in tracking volume, valuable for barrel calorimetry
- Tracking up to large radii
- New readouts promise to improve robustness

LCTPC is designing a time projection chamber for the LC experiment ILD (ILC and CLIC)

GASEOUS DETECTORS AT HL-LHC

- Main R&D activities for ATLAS and CMS are for new muon chambers in the forward directions.
- Increased rate capabilities and radiation hardness
- Improved resolution (online trigger and offline analyses)
- Improved timing precision (background rejection) Technologies
 - Gas Electron Multiplier detectors (LHCb now, ALICE TPC CMS forward chambers)
 - Micro-pattern gas and Thin Gap Chambers (TGCs) (ATLAS forward chambers)
 - Resistive Plate Chambers (RPCs) low resistivity glass for rate capability multi-gap precision timing (CMS forward chambers)

Challenge for ALICE upgrade: high readout rate too fast for gated readout mode solution: triple GEM detectors

MATERIAL BUDGET OF LHC EXPERIMENTS

CMS & ATLAS both slipped considerable in keeping X/X_0 originally aimed for !

Old argument that Silicon would be too thick is not really true ==> power & cooling

THE MATERIAL CHALLENGE AT ILC

R&D done within LC and LHC communities has paved the way towards significantly thinner detectors. But be aware of services...

Ingrid-Maria Gregor, DESY - Challenges for Future Experiments

POWER MANAGEMENT

Powering:

- Services are major part of material budget -> need to reduce material
- LHC tracking detectors increase of channel -> not even the space for all services
- ILC tracking detectors -> very limited material budget
- Advanced powering schemes can help:
 - DC-DC
 - serial powering
 - power capacitors
 - pulsed powering (ILC)

Cooling:

- LHC detectors need to cool silicon sensors extremely low
 - CO₂ cooling current solution
- micro-channel cooling for some detectors a solution
- for non-LHC detectors air cooling an option:
 - Iow mass
 - sufficient for ILC/ CLIC conditions?

Powering and cooling are difficult for all detectors but are most challenging for tracking detectors.

AC_PIX_V8 A: 2.8cm x 1.6cm; ~ 2.0g

27

CHALLENGE: SCALING ROADMAP

- All detector types rely on modern chip technologies
- New technology generation every ~2 years
- From 1970 (8 μm) to 2014 (22 nm) (industrial application)
- End of the road ? Power dissipation sets limits
- HEP nowadays at 90nm and 130nm
- Problem: by the time a technology is ready for HEP -> "old" in industry standards

CALORIMETER

PARTICLE PHYSICS DETECTOR OVERVIEW

I 3m

4m

Calorimeter: Energy measurement of photons, electrons and hadrons through total absorption

2m

0m

Muon Electron Hadron (e.g. Pion)

Photon

Ð

Key:

1m

Ingrid-Maria Gregor, DESY - Challenges for Future Experiments **30**

5m

6m

0

7m

CALORIMETER IN A NUTSHELL

- Energy measurement of photons, electrons and hadrons through total absorption
 - Particles release their energy in matter through production of new particles => shower
 - Number of particles in shower is proportional to the energy of the incidental particle
- Two different types of calorimeters are commonly used ("classic")

Homogeneous Calorimeter

- The absorber material is active
- The overall deposited energy is converted into a detector signal

Sampling Calorimeter

- A layer structure of passive material and an active detector material
- Only a fraction of the deposited energy is "registered"

CURRENT FRONTIERS IN HEP CALORIMETRY

- Multi-jet final states (outgoing quarks, gluons)
 - At high energies the measurement of jets is crucial
 - Missing energy reconstruction Invisible particles

The principle of jet reconstruction: Sum energy in a cone (geometry etc given by jet finding algorithm) to determine energy of original parton

The limitations:

- Neutral hadrons, photons from neutral pion decay: Cannot just sum charged tracks
- The calorimeter with the worst energy resolution (the HCAL) drives the performance for jets!

CURRENT FRONTIERS IN HEP CALORIMETRY

- The goal for next-generation experiments: A quantum leap in jet energy resolution:
 - A factor ~2 improvement compared to current state of the art
 - Motivated by the requirement to separate heavy bosons W, Z, H in hadronic decays
- Two approaches:
 - Substantial improvement of the energy resolution of hadronic calorimeters for single hadrons: Dual / Triple readout calorimetry
 - Precise reconstruction of each particle within the jet, reduction of HCAL resolution impact: Particle Flow Algorithms & Imaging Calorimeters

THE DREAM PRINCIPLE

- Dual **rea**dout **m**odule: Two active media
 - Scintillating fibers: Sensitive to all charged particles in the shower
 - Quartz Cherenkov fibers: Sensitive to relativistic particles: EM only
 - Very different e/h: S ~ 1.4, Q ~ 5
 - Energy reconstructed by combining scintillator and Cherenkov signals: event-by-event correction for em-fraction

CERN RD52

PARTICLE FLOW - JETS FROM INDIVIDUAL PARTICLES

- Improve jet energy reconstruction by measuring each particle in the jet with best possible precision
 - Measure all charged particles in the tracker (60% charged hadrons)
 - Significantly reduce the impact of hadron calorimeter performance: Only for neutral hadrons
 - Measure only 10% of the jet energy with the HCAL, the "weakest" detector: significant improvement in resolution

Particle flow = granularity Optimize relative to particle flow performance

IMAGING CALS: MAKING PFA HAPPEN

- For best results: High granularity in 3D Separation of individual particle showers
 - Granularity more important than energy resolution!
 - Lateral granularity below Moliere radius in ECAL
 & HCAL
 - In particular in the ECAL: Small Moliere radius to provide good two-shower separation Tungsten absorbers
 - Highest possible density: Silicon active elements - thin scintillators also a possibility
 - And: Sophisticated software!

Extensively developed & studied for Linear Collider Detectors: Jet energy resolution goals (3% - 4% or better for energies from 45 GeV to 500 GeV) can be met

SCINTILLATOR BASED CALORIMETER

- Availability of SiPM allows highly granular scintillator based designs
- HCAL: 3x3cm² segmentation of 3mm thick scintillator read out by SiPM through wavelength shifting fiber (Elimination of WLS under study)
- Software compensation ($e/p \sim 1.2$) technique was show to work well through beam tests: $58\%/E^{1/2} \rightarrow 45\%/E^{1/2}$

Key technological challenge:

- Handle the integration aspects
- Develop fully integrated designs
- Handle the power issues
- Costs

0.06

0.04

Ebeam [GeV]

DIGITAL CALORIMETRY

- Measure the energy of a particle through the number of cells hit
- Was tried already in the 80's (unsuccessfully), has seen a renaissance lately due to the availability of very granular systems.

Test beam results from a large prototype detector

PARTICLE PHYSICS DETECTOR OVERVIEW

Tracker: Precise measurement of track and momentum of charged particles due to magnetic field. **Calorimeter**: Energy measurement of photons, electrons and hadrons through total absorption **Muon-Detectors**: Identification and precise momentum measurement of muons outside of the magnet

oicture: CMS@CERN

Triggering

- Collisions every e.g. 25 ns with many simultaneous interactions
- A lot of information stored in the detectors we need all information
- Electronics too slow to read out all information for every collision
- But: a lot of the interactions are very well known we only want rare events
- "Trigger" is a system that uses simple criteria to rapidly decide which events to keep when only a small fraction of the total can be recorded.
 - "Classic" approach

- Modern detectors need to be read out smarter
- Track trigger (H1, CDF, ATLAS FTK, CMS...)
 - trigger on interesting tracks directly with tracking system
 - complex implementation in system
 - i.e. self seeding -> smart electronics to detect high momentum tracks
- Trigger less
 - requires very fast data readout and even smarter offline software

DATA TRANSFER

Modern detectors

- Highly granular systems: many channels
- Untriggered systems (PANDA, ILC, LHCb): large continuous data flow
- LHC upgrade

Need high bandwidth compact ways to get the data out: TB/s

- Use of small feature size ASICs fast (10Gb/s) electrical+optical links with custom devices on-detector (low mass, compact and radiation-hard)
- Also need ever more powerful and more complex FPGAs for data handling
- Where possible send digitized data off-detector for every bunch crossing

(40MHz at LHC) leading to $\sim 10^5$ Gb/s total bandwidths

LHCb/ILC detectors: full triggerless operation, all data shipped to data acquisition

Integrate optical communication on the chips

Optical transmission on a chip: waveguides

CONCLUSIONS

- Tracking detectors: more granular, very small material budget, faster, HL-LHC: extremely radiation hard
- Calorimeters: imaging calorimeters for particle flow are the next generation to measure new physics
- Also "low tech" such as services and cooling needs to be high tech to meet the challenges
- Only rough overview of a broad range of topics
 - Missing: many developments in electronics, data acquisition, monitoring, alignment, global engineering, radiation protection and many other areas ...
- Progress with detector technology is just about keeping pace with the requirements for future facilities
 - Resources are very tight despite much better coordination of effort between experiments
- Sizeable and highly dedicated community engaged in detector R&D
- Detector R&D in particle physics is an area where each sub-topic fills a conference series in itself -> you will learn a lot about this in the coming week.

Some Useful Links

- ECFA HL-LHC (2013): https://indico.cern.ch/event/252045/other-view? view=standard
- ACES 2014: https://indico.cern.ch/event/287628/other-view?view=standard
- CALOR 2014 http://indico.uni-giessen.de/indico/conferenceTimeTable.py? confld=164#20140407.detailed
- AWLC 2014: https://agenda.linearcollider.org/conferenceOtherViews.py? view=standard&confld=6301
- Neutrino 2014: https://indico.fnal.gov/conferenceOtherViews.py? view=standard&confld=8022
- RD50 (2014): https://indico.cern.ch/event/307015/other-view?view=standard

TRACKING DETECTORS: CHALLENGES

- Radiation and rate requirements for HL-LHC silicon sensors are challenging but look to be manageable
 - attention more on material reduction, read-out, trigger, layout and cost optimisation including alternative technologies
- Different challenges with vertex detectors for e⁺e⁻
 - ultimate low mass (0.15% X₀/layer) with complex engineering and integration issues
 - precision time-stamp (~ns for CLIC) and < 5µm spatial resolution</p>
- ILC/CLIC trackers target very high resolution
- Services matter:
 - Iow mass cooling and compact, radiation-hard optical+ electrical links with HV/LV multiplexing (very large numbers of channels running at LV drawing high currents → big potential power loss in cables)
- Large area detectors need close links with industry to develop processes for mass production
- Scintillating fibres and straws (NA62, Mu2e) provide excellent alternatives for several key applications

PERFORMANCE IMPROVEMENT

	Increase granularity at large radii	Increase granularity close to the IP (small pixels)	Increase number of pixellated layers	Reduce material
Fast and efficient pattern recognition in high pileup	ATLAS, CMS	ATLAS, ALICE, CMS, LHCb	ALICE, CMS, LHCb	
Improve momentum resolution at low pT				ATLAS, ALICE, CMS, LHCb
Improve momentum resolution at high pT	ATLAS, CMS			
Improve tracking efficiency	ALICE			ATLAS, ALICE, CMS, LHCb
Improve impact parameter resolution		ATLAS, ALICE, CMS, LHCb		
Improve two-track separation		ATLAS, ALICE, CMS, LHCb		
Reduce photon conversions				ATLAS, ALICE, CMS, LHCb

CONCLUSIONS

- Trends in technology enable to address the challenges in modern particle detectors
 - some trends. not independent
- Segmentation
 - Vertex elements with 20 μm and smaller features
 - Calorimetry employing silicon elements
 - Micro Pattern Gas Detectors (MPGD) applications
- Integration
 - Microelectronics
 - Mechanical sophistication
- Speed
 - Faster electronics, low noise and low power
- Materials
 - Rad-hard, robust, thin, etc.
- Radiation immunity
 - Understanding damage mechanisms and annealing design optimization

ALICE PIXEL R&D

- Inner Barrel: 3 layers
- Outer Barrel: 4 layers
- Detector module (Stave) consists of
 - Carbon fiber mechanical support
 - Cooling unit
 - Polyimide printed circuit board
 - Thinned Silicon sensor chips

PIXEL DETECTORS

LHC: radiation hardness is key parameter

Trends:

- Small pixels
- Low mass
- Local intelligence

Different technologies Hybrid pixels with various sensor materials

CMOS DEPFET FPCCD 3D Chronopixel Sol

SIPM DEVELOPMENTS

Individual cell electronics, Logic, TDC, Photon counter

Ultra fast particle tracker - High energy physics application

Silicon based photo detectors:

- Allow granular scintillator based detectors
- Applications in many other areas

Commercially available

- New development: digital SiPM
- Readout every pixel
- **Broad applications**

Ultra fast single photon sensitive imager - Photon science

