

Application of Physics to Medicine

Piergiorgio Cerello INFN – Torino cerello@to.infn.it

Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8th-13th, 2014

Nuclear Physics for Medicine NuPECC 2014

Medical Imaging

Radioisotopes

Nuclear Physics European Collaboration Committee (NuPECC)

Nuclear Physics for Medicine

http://www.nupecc.org/pub/npmed2014.pdf ParticleTherapy

Overview

browse the developments in Medical Physics applications?
select some examples and try and give some insight

Radioisotopes

PET Imaging

Innovative PET detectors

Hybrid imaging technologies (PET/MRI/EEG)

PET detectors application in particle therapy monitoring

Nanotechnologies + particle therapy

Image Processing

Physics and Medicine have been tightly bound by Medical Imaging technologies for more than a century...

Medical Imaging can be... ... morphological (e.g., CT)

X-rays!!! (Roentgen, 1895)

X-rays are absorbed by the target (i.e., the human body)

Absorption is related to the density via the Lambert-Beer law

 $I(z) = I(0) \exp(-\mu(\rho)z)$

 $\rho = \rho(z)$

By measuring I, µ can be evaluated! And the body local density, with an amazing resolution...

Let's take a look at a CT scan...

Spatial Resolution: ~ 100 µm

Time Resolution: irrelevant

Energy Resolution: irrelevant

is morphological information enough for diagnosis, staging, follow-up of a disease?

Physics and Medicine have been tightly bound by Medical Imaging technologies for more than a century...

Medical Imaging can be... ... morphological (e.g., CT) ... functional (e.g., PET)

X-rays!!! (Roentgen, 1895)

Nuclear Medicine

... is multi-disciplinary!

Should the peptide/antibody be specific or not? It depends on the target...

Nuclear Imaging: Ingredients

Nuclear Imaging is functional!

1) a radioisotope bound to 'functionally-relevant' molecules

the emitted particle must be (in)directly detected

2) a detector

generates information about energy, position, time of the interaction

3) Reconstruction software

provides a 2D/3D activity map

Functional Imaging: Modalities

Positron Emission Tomography (PET)

Single Photon Emission Computed **Tomography (SPECT)**

Computed Tomography Perfusion Imaging (CT)

Functional Magnetic Resonance Imaging (fMRI)

SPECT Imaging: ingredients

1) A **γ emitting isotope** bound to 'functionally-relevant' molecule

the emitted photon must be in the 70 -300 keV energy range

2) a photon detector

gamma camera + collimator

3) Reconstruction software provides a 2D/3D activity map

SPECT Imaging: ingredients

Gamma camera

2D: planar scan 3D: SPECT: Single Photon Emission

SPECT

Computer Tomography

 $E_{\gamma} > 70 \text{ keV}$ absorption in body $E_{\gamma} < 300 \text{ keV}$ efficient collimation and detection

PET Imaging: Ingredients

B-decay

Annihilation

$$\mathbf{e}^+ + \mathbf{e}^- \rightarrow \gamma + \gamma$$

PET Imaging: Ingredients

1) a **β+ decaying isotope** bound to 'functionally-relevant' molecule

the emitted e+ annihilates (almost at rest) close to the emission point into a (nearly) back-to-back 511 keV photon pair

2) a photon detector (typically a crystal)

generates a list of Lines Of Response (LOR)

3) Reconstruction software

provides a 3D activity map

SPECT/PET Imaging: Operations

- 0) Choose Radiotracer
- 1) Synthesize Radiotracer
- 2) Inject Radiotracer
- 3) Wait (about 60 min)
- 4) Scan patient

How do you select and produce a Radiotracer?

Radioisotopes

Radioisotopes

... the fuel of Nuclear Medicine

- What is the optimum isotope for an application ?
- Are we using today the optimum isotopes?
- Is there sufficient supply of isotopes at reasonable cost?
- How reliable is the isotope supply ?

Radioisotopes

more than 3000 known radioisotopes...

SPECT Radioisotopes: γ emitters ["]

lsotope	Half Life	Energy in KeV	Common Applications/Strengths
Technetium–99m [^{99m} Tc]	6 hours	140.5	Most common clinical SPECT isotope; bone imaging
lodine-123 [¹²³ l]	13.2 hours	159.0	Neuro-Imaging
Indium-111 [¹¹¹ In]	2.8 days	171.3, 245.4	Biodistribution
Gallium-67 [⁶⁷ Ga]	3.3 days	93.3, 184.6, 300	Translatable to [68Ga] PET radiotracer
Lutetium–177 [¹⁷⁷ Lu]	6.73 days	113, 210	Radiotherapy
Thallium-201 [²⁰¹ TI]	12.23 days	135, 167	Cardiac Imaging
Tin–117m [^{117m} Sn]	14 days	158.6	Long term Biodistribution
lodine-125 [¹²⁵ I]	59 days	27 to 32	lodination

Radioisotopes supply chain

The traditional supply chain of ⁹⁹Mo/^{99m}Tc

PET Radioisotopes: β+ emitters

PET Isotope	Half Life	Common Applications
Fluorine-18 [¹⁸ F]	1.8 hours	FLT, FDG
Copper –64 [⁶⁴ Cu]	12.7 hours	Short term tracking of small molecules and peptides; imaging of disease state adn efficacy using targeted biologics
Yttrium–86 [⁸⁶ Y]	14.7 hours	Analog of [90Y] radiotherapy isotope that can be used for imaging studies
Cobalt-55 [⁵⁵ Co]	17.5 hours	Characterization of tissue infarct regions
lodine-124 [¹²⁴ l]	4.2 days	Iodination labeling of proteins
Zirconium–89 [⁸⁹ Zr]	3.27 days	Biodistribution

Therapy with Radioisotopes

Not only imaging!

- the peptide/antibody MUST be VERY specific
- half-life: delivery and washout

Tumor therapy comparison

(Molls, TU München; according to Tannock: Lancet 1998, Nature 2006)

Therapeutic Radioisotopes

Radio- nuclide	Half- life (d)	E mean (keV)	Eγ (B.R.) (keV)	Range	
Y-90	2.7	934 β	-	12 mm	Established
I-131	8.0	182 β	364 (82%)	3 mm	isotopes
Lu-177	6.7	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotope

... I would expect new developments in the field...

"exotic" isotopes

Diagnostic Accuracy: PET vs. SPECT

D. Le Guludec, ICTR-PHE2012

Bateman et al, J Nucl Cardiol 2006

Operations

- 1) Synthesize Radiotracer
- 2) Inject Radiotracer
- 3) Wait (about 60 min)
- 4) Scan patient

How do you design a PET system?

Conventional PET detector

What are the critical parameters of a PET system?

PET Imaging parameters

Field Of View Photon detection efficiency Energy resolution

- Compton scattering vs. photopeak

Spatial Resolution

- positron path
- depth of interaction
- time of flight

Time Resolution

- Annihilation point along the LOR

PET Imaging: detection efficiency

Detection efficiency

(aka sensitivity, stopping power)

Reduces noise from counting statistics Reduces dose

Example: 2cm of LSO ~ 82% (singles) ~ 67% (coincidences)

1M Events

55M Events

PET Imaging: Energy Spectrum

Isica Nucleare

PET Imaging: Compton background

Energy resolution

Scattered photons change direction AND lose energy

Affects acceptance of scattered coincidences

Currently ~ 15 - 20%

Deadtime / Rate

single channels must handle **MHz** count rates!

multiple coincidences rejection

PET Imaging: Depth of Interaction

Depth Of Interaction

- parallax error
- goal ~ 1 mm

PET Imaging: Time of Flight

Time Of Flight

- more information on LOR
- less background
- Detection Quantum Efficiency
- present intrinsic limit: ~ 100 ps

 $P(x) \sim exp(-(x - x_m)/2\sigma^2)$

$$\frac{\sigma(S/N_{tof})}{\sigma(S/N_{non-tof})} = \sqrt{\frac{2D}{c\Delta t}}$$

Can PET performance be improved? Why should it?

- Better image quality and/or Lower dose
- Better sensitivity & specificity in disease detection
- Quantitative PET analysis
 - that also requires protocol standardization
- Shorter Exam Time / Lower Cost

Can PET performance be improved? Why should it?

- Better image quality and/or Lower dose
- Better sensitivity & specificity in disease detection
- Quantitative PET analysis
 - that also requires protocol standardization
- Shorter Exam Time / Lower Cost

Can PET performance be improved? Why should it?

- Better image quality and/or Lower dose
- Better sensitivity & specificity in disease detection
- Quantitative PET analysis
 - that also requires protocol standardization
- Shorter Exam Time / Lower Cost

PET detectors

- 4D detectors with new design
 - Depth of Interaction
 - Parallax error
 - Time Of Flight
 - Weighted Line Of Response
 - MR compatibility
 - PET/MR Hybrid Imaging
 - Compactness
 - In-beam PET in HadronTherapy
 - Cost & Scalability

How to improve PET design?

Scintillators

Photon Detectors

Front-End Electronics

System Design & Integration

Scintillators

	Nal	BGO	GSO	LSO	LYSO	LGSO	LuAP	YAP	LaBr ₃
Light yield 10 ³ ph/MeV	38	9	8	30	32	16	12	17	60
Primary decay time	250	300	60	40	41	65	18	30	16
∆E/E (%) at 662 keV	6	10	8	10	10	9	15	4.4	3
Density (g/cm ³)	3.67	7.13	6.71	7.35	7.19	6.5	8.34	5.5	5.08
Effective Z_{eff}	50	73	58	65	64	59	65	33	46
1/μ@511 keV (mm)	25.9	11.2	15.0	12.3	12.6	14.3	11.0	21.3	22.3
PE (%) at 511 keV	18	44	26	34	33	28	32	4.4	14

Photon Detectors

Detector	PMT	APD	(d)SiPM	UFSD
Gain	10^5	50-1000	~ 10^6	5-15
Rise Time (ns)	~ 1	~ 5	~ 1	~ 0.1
QE @ 420 nm (%)	~25	~ 70	~ 25-75 (PDE)	~ 75
Bias (V)	> 1000	300-1000	30-80	100
Temperature sensitivity (%/K)	< 1	~ 3	1-8	Negligible
Magnetic filed sensitivity	Yes	No	No	No

t

First with 3 Low threshold

System Design

 Segmented vs. Monolithic crystal Axial Block

Time measurement strategy

Single secondary photon detection

- noise
- dark counts

Some Examples...

 Apologies in advance to all the projects that I will not mention

The "standard"

4DM-PET Detector Layout

- A. LYSO scintillator slab Size: 48 · 48 · 10 mm³
- B. Top / bottom SiPM layers
 - 16x16 square pixels, 3mm pitch
- C. Independent identical readout boards
- Depth Of Interaction

Compton effect

- Size Asymmetry: (t b)/(t + b)
- Simulated FWHM: 1.0 mm

Courtesy of the 4DM-PET Collaboration

4DM-PET DOI measurement

Preliminary DOI measurement on a 5x5 mm² detector with 4x4 channels

- "worst case scenario"
- 2 mm FHWM

16x16 module with TOF capabilities under construction

Courtesy of the 4DM-PET Collaboration

4DM-PET TOF simulation

Time Resolution

- Cluster timing is affected by single pixel dark counts
- A cluster is defined by N times that sample the crystal decay profile
 - take as cluster time the second minimum pixel time!
- T₂ RMS: 230 ps, FWHM: 100 ps

Courtesy of the 4DM-PET Collaboration

The AX-PET Demonstrator

AxPET Performance

Courtesy of the AXPET Collaboration

AX-PET 2.0. Mini set-up

Dual-sided readout with dSiPMs

Consider dual-sided readout of long crystals to get rid of propagation delays.

Courtesy of the AXPET Collaboration

• Scintillator (LYSO)

- Sensor (SPAD)
- Network (Gbps)

SPADnet

Coincidence Timing Resolution

Energy Spectrum

Braga et al., ISSCC 2013

Courtesy of the SpadNET Collaboration

Status of PET detectors

- (d)SiPM-based Magnetic compatible 4D detectors will soon be available
- PET 3D resolution will reach its intrinsic limit
- TOF is the key to further improvements
 - But can we push it towards 10 ps (3mm)?
- PET imaging will be a milestone for molecular imaging and personalized medicine

new PET detectors

Foll12_Mr01

T FOR MEDICAL USAGE

TOF-PET: crucial

real "phase transition": time resolution ~ 10 - 20 ps

the challenge lies in the detector rather than the electronics...

Hybrid Imaging

morphological + functional

Evolution of Cameras

Hybrid Imaging

PET/CT Hybrid Imaging

virtually available anywhere Clinical routine in cancer staging, therapy assessment

- PET/MRI Hybrid Imaging ... on its way
- Excellent performance

PET/CT: technological evolution, medical revolution

Hybrid Imaging

PET/MR: technological revolution, medical evolution

PET

PET / MRI

MRI

- 2 France
- 1 Greece
- 1 Switzerland

OBJECTIVES

- find new biomarkers and define a suitable multimodal paradigm that provides clinical evidence on the feasibility of advanced schizophrenia diagnosis
- construct and test an optimized cost-effective trimodality imaging instrument (brain PET/MR/EEG) for diagnosis, monitoring and follow-up of schizophrenia disorders.
- validate the trimodal imaging device with regard to the results and the clinical data obtained from objective 1

A closer LOOK at the TRIMAGE detector

Dimensional outline (left) and artistic view (right) of the dedicated brain PET/MR/EEG system (the EEG cap is not shown).

MR CRITICITY

- -800 mm bore
- Asymmetric gradient
- low field 1.5 T

PET CRITICITY

- sp res 2mm (DOI)
- high efficiency
- axial FOV

low-cost is important!!!

INFN

stituto Nazionale Il Fisica Nucleare

TRImage

256 SiPMs

on an array of 2×2 tiles Tile: matrix of 8×8 SiPMs SiPM size: 3 mm, pitch: 3.125 mm

Total module area: 50 mm × 50 mm

18 modules x 3 rings

Expected PET performance

18 modules x 3 rings Axial field of view: 150mm Transaxial field of view = 110 mm radius Efficiency: 67% at the center (2 cm LYSO) Spatial resolution: 2mm (FWHM)

Istituto Nazionale di Fisica Nucleare

The PET/MRI challenge

a standard PET system is expected to:

- Work well in a magnetic field
- Heavily affect the MRI performance (eddy currents)

Custom magnetic compatible design must be developed:

- ASIC / connectors / boards / FPGA
- Mechanical structure (cooling!)
- MR shielding (copper, carbon fibre)

Range verification in HT

AAPM 2012: proton therapy to become mainstream?

- 35 % unproven clinical advantage of lower integral dose
- 33 % range uncertainties
- 19 % never become a mainstream treatment option

Particle Therapy: error sources

- Treatment Planning uncertainties

Protons

Treatment delivery

Current approach: Opposed fields, overshooting

Desirable approach: Different beam angles and no overshooting

Secondary particles: a SIGNAL!

neutron

- check of dose release shape
- feed-back during the treatment (in-beam)
- integration in the treatment work-flow

- charged particles
- β+ emitting isotopes

beam

 γ_{511} keV

proton

 $\gamma_{511 \text{ keV}}$

Secondary particles: a SIGNAL!

Prompt photons

Prompt photons: slit camera by IBA

INFN istituto Nazionale di Fisica Nucleore

- Simple geometrical concept
- Optimized for range measurement on proton beam

Prompt photons: Compton camera

Absorber: Scintillator

- BGO 35 × 38 × 30 mm³
- 4 PMT

Scatterer: double-sided Si strip detectors

- Large size detector bonded on PCB
- Dedicated low-noise ASIC

Charged particles

- detection efficiency ~ 100%
- easily back-tracked to the emission point
 - correlation to the beam profile as for β^+ activity

but...

- Low emission rate
- Escape energy threshold ~ 50-100 MeV
- multiple scattering inside the patient -> 6-8 mm on single track back-pointing resolution

sica Nucleare

~ 10³ events required to achieve desired accuracy on the emission point distribution: detector size matters!

Charged particles

L.Piersanti et al. PMB 59 (2014) 1857

Charged particles: GEM tracker

 Large area gas (!) detector

- Acceptable solid angle even far away from the patient
- No need for TOF

Expected performance $\sigma_{\text{GEM-spatial}} \cong 400 \mu m$ $\sigma_{\theta} \cong 6 \text{mrad}$ Angular resolution $\Omega^{0.3\%}$ (0.04 sr) Solid angle

Courtesy of TERA- Foundation

β⁺ activity and dose: correlation

Therapy beam	¹ H	³ He	⁷ Li	¹² C	¹⁶ O	Nuclear medicine
Activity density / Bq cm ⁻³ Gy ⁻¹	6600	5300	3060	1600	1030	10 ⁴ – 10 ⁵ Bq cm ⁻³

Charged particles & in-beam PET

INSIDE

in-beam, multimodal dose profiler for hadron-therapy at **CNAO**

detection of:

- **β+ decaying** isotopes (PET)
 - charged secondaries & (?) prompt photons (Tracker)

the PET detector

¹⁵O, ¹¹C

- 2 planar panels 10 cm x 20 cm², each made by 2 x 4 detection modules
- Each module is composed of a 16 x 16 pixelated LYSO (or LFS) scintillator matrix (3x3 mm² crystals, 3.1 mm pitch, for a total sensitive area of 5x5 cm²) coupled to a SiPM array

- 6 XY planes, with 2 cm spacing, made of 2 stereo layers of 192 0.5x0.5 mm² square scintillating fibers, read out by Hamamatsu 1mm² SiPM : S12571-050P
- 1 pad with 4x4 LYSO pixelated crystals (50 x 50 x 16 mm³), with 1.5 cm thick Plastic absorber in front to screen electrons, read out by 64 ch Hamamatsu MultiAnode

Simulations

Primaries: 10⁸ protons

- based on FLUKA + ROOT
 - Detailed detector description
 - Signal generation and reconstruction with readout features
 - Geometry and material description (electronic board, mechanical structures)
- extensively used for the detector design optimization
- now being exploited for further optimization and beam test validation
- will be used on INFN-cloud computing facilities to provide input to optimize the reconstruction and analysis

Energy: 134 MeV Time: **2 ms beam on**, 300 s beam off Rate: 5*10¹⁰ pps, scaled down to 5*10⁹ pps

Beam

- Energy: 95 Mev
- Intensity2*10⁹ p/s
- Detectors
 - LYSO crystal 3 x 3 x 10 mm³
 - RGB SiPM from AdvanSid 3x3 mm²
 - Front-end ASIC: TOFPET LIP Lisbon/INFN Torino
 - · 64 input channels, 100 kHz/chn
 - Dyn range 200 pC
 - · SNR 20 dB
 - Time resolution 500ps FWHM
 - Power consumption 10 mW/chn

PMMA phantom

(5 x 5 x 7 cm³)

Peak to valley: ~ 15 (Raw Data), ~ 16 (Simulation) DAQ Rate and full beam/in beam structure under control

Photopeak position (singles!)

511 keV photopeak events

Number of events

Expected number of **coincidences** (**interspill only, no after treatment acquisition**) evaluated on an **input treatment plan**, taking the detector acceptance/efficiency into account: **3.09*10**⁵

Annihilation position

- Simulation of the annihilation position :
 - 2 ms beam on + 300 s beam off
 - Plot of the (known!!!) annihilation positions

Annihilation position

- Simulation of the annihilation position :
 - 2 ms beam on + 300 s beam off
 - Plot of the (known!!!) annihilation positions

INSIDE

2014 construction

Opportunity: correlate PET and Tracker information in the data analysis

PT Monitoring: summary

- The dose monitoring problem is a key issue to improve Quality Assurance in Particle Therapy
 - **in beam-PET**: metabolic wash-out and difficulty in quick feedback are clear limitations
 - prompt gamma: can suffer from the presence of a huge neutral background
 - **light charged particles**: statistics should balance the absorption and scattaring in the patient body

Nano-particles

RDH/nATT project

Intra-venous injection of nanoparticles increases the effect of radio- and hadron-therapy

What are the physical processes that cause the additional damage?

RDH/nATT project

FDG-bound nanoparticles were proposed as a way to concentrate nanoparticles in the tumor volume and observe functional features with morphological imaging

Why not using biomarker-tagged nanoparticles to selectively amplify the therapy effect?

Damage mechanisms

The biological outcome is related to the structure of the energy deposition nearby the GNP. A set of MC simulation were performed:

- GNP: 10, 20 and 50 nm radius
- Primary particles: gamma @ (40 keV, 160 keV, 6 MeV, 15 MeV), proton @ (50, 100 and 150 MeV).
- A computational model based on the LEM is being studied to evaluate the biological effect.

GNP Production & Characterization

GNP produced and characterized with spectrophotometry GNP functionalized (57% efficiency) with18F-FDG

in-vivo microPET/CT measurements

- Protocol submission for measurements with small animals submitted (May 2014)
 - Waiting for the approval
 - Measurements likely will start by the end of September
- in vitro test of the protocol (Jul 1st)

Piergiorgio Cerello (cerello@to.infn.it)

in-vitro test on GNPs

- Reactive Oxygen Species production tests started (Istituto Tumori, Milano; Ospedale Mauriziano, Torino)
 - 6 MV photons
 - DPBF as oxygen quencher (to be replaced in new measurements)

CAD Software

Data Acquisition

Reconstruction

Image Processing: Computer Assisted Detection

the 'Lazy consistency model'

a suggestion

the first rule of debugging

A multi-thread WEB-based CADe system for nodule detection on chest multislice CT scans

the M5L algorithms

M5L validation

LIDC Public Database

- Annotation by 4 radiologists
- Slice thickness: 0.5-3mm
- Gold standard: set of nodules with at least 2 annotations

Training: 94 CTs Validation: 949 CTs

E. Lopez Torres et al, "Large scale validation of the M5L lung CAD on heterogeneous CT datasets" submitted to Medical Physics

Email: cerello@to.infn.it		
Password:		
	(lost password?)	
Login		
Developed by:	Powered by:	
	IN H WUDCH	

Istituto Nazionale di Fisica Nucleare

Grab File Edit Capture Window H	elp		💊 🔊 👪 💻 🕴 🎅 🔹 🖅 (100%) Fri 11:39 AM
0	M5LC 1	MAGIC5 Lung CAD	
► 🙆 + ✓ http://magic5.to.infn.it/m5lc/			C Q- Google
INFN - Torino INFN Webmail INFN Apple	Facebook La Repubblica II Sole 24 Ore	LA STAMPA Corriere Il Fatto Quotidia	ano Google Maps YouTube Wikipedia Yahoo! News (359) *
M5LC HOME ADMINISTRATION			Welcome, Piergiorgio Cerello » Profile Logout
Home			
nome			
Submit a new case Cases			
	Upload	In Progress	
		<u>×</u>	
	Percent Complete:	44%	
	Files Uploaded:	0 of 1	
	Current Position:	45096 / 101168 KBytes	
	Elapsed Time:	00:00:21	
	Est Time Left:	00:00:26	
	Est Speed:	2147 ND/S.	
A The Case ID should contain only alphar	numeric characters and no spaces!		
Case ID:			
GS20_1			
Files:			
Choose File			
Upload or Reset			
Developed by:	Powered by:		
	XIT MIDEN		
Begin forv	varded message:		
f 😔 🌚 🔟 🎯 🙋 🖻 📙 🐼 🕡) 🕹 🎇 🔘 🐼 🗙 🖿 🖗 🖉	₩₽ ₽≙≤©(/ S # 9/ Du 🛛 📥 📾 🗰 🖬 🖏 (
1			

Safari File Edit View His	tory Bookmarks Window Help	p M5LC		.00%) Fri 11:42 AM
► 🙆 + ✓ http://magic5.to.inf	n.it/m5lc/upload/upld_finished.php?upl	oad_id=9c73212a186d81dc353fbf1cd465	8eca C Q- Google	
INFN - Torino INFN Webmail IN	IFN Apple Facebook La Repubblica	Il Sole 24 Ore LA STAMPA Corriere II	Fatto Quotidiano Google Maps YouTube Wikipedia Y	ahoo! News (359) *
MOLC				
Upload Result				
UPLOADED FILE NAME		UPLOADED FILE SIZ	E	
	M5LC_GS20_1.zip		98.80 MB	
		Validate and as hadi		
		Validate and go back		
Developed by:	Powe	ared by:		
		VIDEN		
		8 80 68 8		
Copyright © 2011 INFN & diXit				
· ·	Begin forwarded message:			
🗧 😔 🛞 📐 🥪 🤕 📆	🖲 🐼 🕖 💄 🌄 🔘 🐼 🗴	(🔚 🍞 💋 🐙 🖳 🚵	🗢 🚫 🌾 🍞 🕒 🕅 🤛 🔤 📐	anin 🖃 🔫

the WEB-based M5L

• sit back and relax... or do something else

 ... but something is going on in the OpenNebula Cloud at INFN-Torino

the WEB-based M5L

	1	nbox — cerello@to.infn.it (45 messages)		(
			9	
it	Delete Junk Reply Reply All Fo	nward New Message Note To Do		Search
	. • • From	Subject	Date Received	1
alice-melinda	Federico Carminati	Re: AW: AW: AW: paper for GRID11	Today	9:54 AM
alice-mmeoni	5 Federico Carminati	Fwd: AW: AW: AW: paper for GRID11	Today	3:27 AM
alice-papers	m5lc@mag09xl.to.infn.it	Case LIDC0092_17350 result file	Today	1:53 A
lice-sdd	m5lc@mag09xl.to.infn.it	Case LIDC0091_16592 result file	Today	1:44 A
ice-tracking	m5lc@mag09x1.to.infn.it	Case LIDC0113_32928 result file	Today	1:14 A
AYES-Ham	Andrea Chincarini	Re: PRIN NO GOOD	Today	1:09 A
VFC-Snam	Sandro Squarcia	R: PRIN NO GOOD	Yesterday	8:20 P
area apost	5 fiorina@to.infn.it	Mind	Yesterday	5:05 P
m	Mariafebronia Sciacca	Re: BP Last version	Yesterday	4:36 P
leted Messages (cerello@to.in	(iuseppe SERRAO	R: BP Last version	Yesterday	4:18 P
Gt	CO Alex Stancu	FIL	Yesterday	2:19 P
aft	Roberto Bellotti	PRIN NO GOOD	Yesterday	2:15 P
FF3	m5lc@mag09xl.to.infn.it	Case anode05 result file	Yesterday	1:00 A
gattinara gfm 1r3	Dear Piergiorgio Cerello,			
growna gra gr3 gr5 grid-security nfn- nfn-calcolo. nfn-cral	Dear Piergiorgio Cerello, WIDEN/M5LC completed the analysis of case cad.xml (2.5 MB)	e LIDC0091_16592.		
gaturata gfm gr3 gr5 grid grid-security infn- infn-calcolo infn-cral MAIL ACTIVITY	Dear Piergiorgio Cerello, WIDEN/M5LC completed the analysis of case Cad.xml (2.5 MB)	e LIDC0091_16592.		
fm r3 r5 rid -security ifn ifn-calcolo ifn-cral MAIL ACTIVITY	Dear Piergiorgio Cerello, WIDEN/M5LC completed the analysis of case	9 LIDC0091_16592.		
attriard fm r3 r5 rid rid-security nfn -calcolo nfn-calcolo nfn-cral MAIL ACTIVITY	Dear Piergiorgio Cerello, WIDEN/M5LC completed the analysis of case cad.xml (2.5.MB)	9 LIDC0091_16592.		
attriard fm r3 r5 rid rid-security nfn fn-calcolo <u>nfn-cral</u> MAIL ACTIVITY	Dear Piergiorgio Cerello, WIDEN/MSLC completed the analysis of case Cad.xml (2.5 MB)	e LIDC0091_16592.		

diXit

Istituto Nazionale di Fisica Nucleare

Can physics help?

Cancer and efficiency of treatments

At time of diagnosis	Primary tumor	With metastases	Total
Diagnosed	58%	42%	100%
Cured by:			
Surgery	22%		
Radiation therapy	12%		
Surgery+radiation therapy	6%		
All other treatments and combinations incl. chemotherapy		5%	
Total cured	40%	5%	45%
Fraction cured	69%	12%	45%

Per year over one million cancer deaths in the EU.

- \Rightarrow improve early diagnosis
- \Rightarrow improve systemic treatments

... probably yes

Medical Imaging

will PET/CT replace CT as the standard in oncology? what will the evolution of PET/MR be? how far can we push the PET Time Of Flight resolution?

Particle therapy

how will it scale? real-time range monitoring? use of nanoparticles as amplifiers?

Radioisotopes

the key to molecular imaging...

Computer Assisted Detection

large scale validation? cloud-based deployment?